Experiment 2: Concentration Gradients and Membrane Permeability
In this experiment, you will dialyze a solution of glucose and starch to observe:
An indicator is a substance that changes color when in the presence of a specific substance. In this experiment, IKI will be used as an indicator to test for the presence of starch.
Materials (5) 100 mL Beakers |
Permanent Marker *15.0 cm Dialysis Tubing *You Must Provide
|
|
|
|
|
Procedure
1. Measure and pour 50 mL of water into a 100 mL beaker using the 100 mL graduated cylinder. Cut a piece of dialysis tubing 15.0 cm long. Submerge the dialysis tubing in the water for at least ten minutes.
2. Measure and pour 82 mL of water into a second 100 mL beaker using the 100 mL graduated cylinder. This is the beaker you will put the filled dialysis bag into in Step 9.
3. Make the glucose/sucrose mixture. Use a graduated pipette to add 5 mL of glucose solution to a third 100 mL beaker and label it “dialysis bag solution.” Use a different graduated pipette to add 5 mL of starch solution to the same beaker. Mix by pipetting the solution up and down six times.
4. Using the same pipette that you used to mix the dialysis bag solution, remove 2 mL of the dialysis bag solution and place it in a clean beaker. This sample will serve as your positive control for glucose and starch.
a. Dip one of the glucose test strips into the 2 mL of glucose/starch solution in the third beaker. After one minute has passed, record the final color of the glucose test strip in Table 3. This is your positive control for glucose.
b. Use a pipette to transfer approximately 0.5 mL of IKI into the 2 mL of glucose/starch solution into the third beaker. After one minute has passed, record the final color of the glucose/starch solution in the beaker in Table 3. This is your positive control for starch.
5. Using a clean pipette, remove 2 mL of water from the 82 mL of water you placed in a beaker in Step 2, and place it in a clean beaker. This sample will serve as your negative controls for glucose and starch.
a. Dip one of the glucose test strips into the 2 mL of water in the beaker. After one minute has passed, record the final color of the glucose test strip in Table 3. This is your negative control for glucose.
b. Use a pipette to transfer approximately 0.5 mL of IKI into the 2 mL in the beaker. After one minute has passed, record the final color of the water in the beaker in Table 3. This is your negative control for starch.
Note:The color results of these controls determine the indicator reagent key. You must use these results to interpret the rest of your results.
6. After at least ten minutes have passed, remove the dialysis tube and close one end by folding over 3.0 cm of one end (bottom). Fold it again and secure with a rubber band (use two rubber bands if necessary).
7. Test to make sure the closed end of the dialysis tube will not allow solution to leak out. Dry off the outside of the dialysis tube bag with a cloth or paper towel. Then, add a small amount of water to the bag and examine the rubber band seal for leakage. Be sure to remove the water from the inside of the bag before continuing.
|
Figure 4:Step 9 reference. |
9. Place the filled dialysis bag in the 100 mL beaker filled with 80 mL of water, leaving the open end draped over the edge of the beaker as shown in Figure 4.
10.Allow the solution to sit for 60 minutes. Clean and dry all materials except the beaker holding the dialysis bag.
11.After the solution has diffused for 60 minutes, remove the dialysis bag from the beaker and empty the contents of the bag into a clean, dry beaker. Label the beaker “final dialysis bag solution.”
12.Test the final dialysis bag solution for the presence of glucose by dipping one glucose test strip into the dialysis bag. Wait one minute before reading the results of the test strip. Record your results for the presence of glucose in Table 4.
13.Test for the presence of starch by adding 2 mL IKI. After one minute has passed, record the final color in Table 4.
14.Use a pipette to transfer 8 mL of the water in the beaker to a clean beaker. Test the beaker water for the presence of glucose by dipping one glucose test strip into the beaker. Wait one minute before reading the results of the test strip, and record the results in Table 4.
15.Test for the presence of starch by adding 2 mL of IKI to the beaker water. Record the final color of the beaker solution in Table 4.
Table 3: Indicator Reagent Data |
||||
Indicator |
Starch Positive |
Starch Negative |
Glucose Positive |
Glucose Negative |
Glucose Test Strip |
n/a |
n/a |
|
|
IKI Solution |
|
|
n/a |
n/a |
Table 4: Diffusion of Starch and Glucose Over Time |
||
Indicator |
Dialysis Bag After 60 Minutes |
Beaker Water After 60 Minutes |
IKI Solution |
|
|
Glucose Test Strip |
|
|
Post-Lab Questions
1. Why is it necessary to have positive and negative controls in this experiment?
2. Draw a diagram of the experimental set-up. Use arrows to depict the movement of each substance in the dialysis bag and the beaker.
3. Which substance(s) crossed the dialysis membrane? Support your response with data-based evidence.
4. Which molecules remained inside of the dialysis bag?
5. Did all of the molecules diffuse out of the bag into the beaker? Why or why not?
Experiment 1: Diffusion through a Liquid
In this experiment, you will observe the effect that different molecular weights have on the ability of dye to travel through a viscous medium.
Materials 1 60 mL Corn Syrup Bottle, C12H22O11 |
Ruler *You Must Provide |
|
Procedure
1. Use clear tape to secure one-half of the petri dish (either the bottom or the top half) over a ruler. Make sure that you can read the measurement markings on the ruler through the petri dish. The dish should be positioned with the open end of the dish facing upwards.
Table 1: Rate of Diffusion in Corn Syrup |
|||||
Time (sec) |
Blue Dye |
Red Dye |
Time (sec) |
Blue Dye |
Red Dye |
10 |
|
|
70 |
|
|
20 |
|
|
80 |
|
|
30 |
|
|
90 |
|
|
40 |
|
|
100 |
|
|
50 |
|
|
110 |
|
|
60 |
|
|
120 |
|
|
|
|
|
|
|
|
Table 2: Speed of Diffusion of Different Molecular Weight Dyes |
|||
Structure |
Molecular Weight |
Total Distance |
Speed of Diffusion |
Blue Dye |
|
|
|
Red Dye |
|
|
|
*Multiply the total distance diffused by 30 to get the hourly diffusion rate
Post-Lab Questions
https://nuonline.neu.edu/bbcswebdav/pid-9451339-dt-content-rid-14232100_1/courses/BIO1101.90155.201714/BIO1101.90155.201714_ImportedContent_20160930044714/CourseRoot/html/lab006s001.html
https://nuonline.neu.edu/bbcswebdav/pid-9451340-dt-content-rid-14232401_1/courses/BIO1101.90155.201714/BIO1101.90155.201714_ImportedContent_20160930044714/CourseRoot/html/lab006s002.html
https://nuonline.neu.edu/bbcswebdav/pid-9451341-dt-content-rid-14232402_1/courses/BIO1101.90155.201714/BIO1101.90155.201714_ImportedContent_20160930044714/CourseRoot/html/lab006s003.html
4 years ago
5
Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.
You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more